首页> 外文OA文献 >The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins
【2h】

The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins

机译:疏水相互作用的压力依赖性与观察到的蛋白质压力变性相一致

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Proteins can be denatured by pressures of a few hundred MPa. This finding apparently contradicts the most widely used model of protein stability, where the formation of a hydrophobic core drives protein folding. The pressure denaturation puzzle is resolved by focusing on the pressure-dependent transfer of water into the protein interior, in contrast to the transfer of nonpolar residues into water, the approach commonly taken in models of protein unfolding. Pressure denaturation of proteins can then be explained by the pressure destabilization of hydrophobic aggregates by using an information theory model of hydrophobic interactions. Pressure-denatured proteins, unlike heat-denatured proteins, retain a compact structure with water molecules penetrating their core. Activation volumes for hydrophobic contributions to protein folding and unfolding kinetics are positive. Clathrate hydrates are predicted to form by virtually the same mechanism that drives pressure denaturation of proteins.
机译:数百MPa的压力可使蛋白质变性。这一发现显然与最广泛使用的蛋白质稳定性模型相矛盾,在该模型中,疏水核心的形成驱动蛋白质折叠。通过将压力依赖于水的转移到蛋白质内部来解决压力变性难题,与将非极性残基转移到水(蛋白质展开模型通常采用的方法)相反。然后可以使用疏水相互作用的信息理论模型通过疏水聚集体的压力失稳来解释蛋白质的压力变性。与热变性蛋白质不同,压力变性蛋白质保留了紧凑的结构,水分子渗透了其核心。疏水作用对蛋白质折叠和展开动力学的活化体积为正。笼形的水合物预计会通过驱动蛋白质压力变性的相同机理形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号